Laplace-Residual Power Series Method for Solving Time-Fractional Reaction–Diffusion Model
نویسندگان
چکیده
Despite the fact Laplace transform has an appreciable efficiency in solving many equations, it cannot be employed to nonlinear equations of any type. This paper presents a modern technique for employing LT time-fractional reaction–diffusion model. The new approach is called Laplace-residual power series method (L-RPSM), which imitates residual determining coefficients solution. proposed also adapted find approximate solution that converges exact equations. In addition, been applied examples, and findings are found impressive. Further, results indicate L-RPSM effective, fast, easy reach Furthermore, several actual solutions graphically represented demonstrate accuracy method.
منابع مشابه
Residual Power Series Method for Solving Time-fractional Model of Vibration Equation of Large Membranes
The primary aim of this manuscript is to present the approximate analytical solutions of the time fractional order α (1<α≤2) Vibration Equation (VE) of large membranes with the use of an iterative technique namely Residual Power Series Method (RPSM). The fractional derivative is defined in the Caputo sense. Example problems have been solved to demonstrate the efficacy of the present method and ...
متن کاملA Fuzzy Power Series Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power series in the Caputo derivatives sense. To illustrate the reliability of method some examples are provided. In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power...
متن کاملApproximate Analytical Solutions of Time Fractional Whitham-Broer-Kaup Equations by a Residual Power Series Method
In this paper, a new analytic iterative technique, called the residual power series method (RPSM), is applied to time fractional Whitham–Broer–Kaup equations. The explicit approximate traveling solutions are obtained by using this method. The efficiency and accuracy of the present method is demonstrated by two aspects. One is analyzing the approximate solutions graphically. The other is compari...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملBoundary particle method for Laplace transformed time fractional diffusion equations
This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Lapl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2023
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract7040309